Naris
Download File >>> https://bytlly.com/2tl1AM
The spelling naris is the more usual singular form of this noun. The singular spelling variant nare is a back-formation from the plural form nares. As such, nare is often criticized, but it does appear occasionally in published, edited medical sources.
In most animals there is bilateral access of odorants to the olfactory sensory epithelium. Air enters the nose through two external nares and passes back through the nasal cavity, which is divided down the midline by a cartilaginous nasal septum. The olfactory mucosa, a sheet of ciliated bipolar receptor cells, is found in the caudal two thirds of the nasal cavity. Axons from the sensory cells project to an ipsilateral extension of the telencephalon known as the olfactory bulb. If a single external naris of a rat pup is surgically closed (usually via brief cauterization) on the day after the day of birth (P1) and the subject is examined on P30, the size of the ipsilateral olfactory bulb is reduced by approximately 25%. The large reduction in size, coupled with the clear lamination and other features of the olfactory system, indicates that the manipulation is an ideal preparation for examining the regulation of early growth. We know that both olfactory bulbs are of equal size at the time of occlusion, but that 30 days later there is a large discrepancy. What series of events produces the changes The present paper outlines what is known about the anatomical, biochemical and physiological changes introduced by naris occlusion in order to lay a framework for further work.
Unilateral naris occlusion has long been the method of choice for effecting stimulus deprivation in studies of olfactory plasticity. A significant body of literature speaks to the myriad consequences of this manipulation on the ipsilateral olfactory pathway. Early experiments emphasized naris occlusion's deleterious and age-critical effects. More recent studies have focused on life-long vulnerability, particularly on neurogenesis, and compensatory responses to deprivation. Despite the abundance of empirical data, a theoretical framework in which to understand the many sequelae of naris occlusion on olfaction has been elusive. This paper focuses on recent data, new theories, and underappreciated caveats related to the use of this technique in studies of olfactory plasticity.
In a number of mammals muscle dilator nasi (naris) has been described as a muscle that reduces nasal airflow resistance by dilating the nostrils. Here we show that in rats the tendon of this muscle inserts into the aponeurosis above the nasal cartilage. Electrical stimulation of this muscle raises the nose and deflects it laterally towards the side of stimulation, but does not change the size of the nares. In alert head-restrained rats, electromyographic recordings of muscle dilator nasi reveal that it is active during nose motion rather than nares dilation. Together these results suggest an alternative role for the muscle dilator nasi in directing the nares for active odor sampling rather than dilating the nares. We suggest that dilation of the nares results from contraction of muscles of the maxillary division of muscle nasolabialis profundus. This muscle group attaches to the outer wall of the nasal cartilage and to the plate of the mystacial pad. Contraction of these muscles exerts a dual action: it pulls the lateral nasal cartilage outward, thus dilating the naris, and drags the plate of the mystacial pad rostrally to produce a slight retraction of the vibrissae. On the basis of these results, we propose that muscle dilator nasi of the rat should be re-named muscle deflector nasi, and that the maxillary parts of muscle nasolabialis profundus should be referred to as muscle dilator nasi.
The dilator naris anterior (Latin: musculus dilator naris anterior) is a muscle of facial expression that encircles the nostril and participates in widening it. It is classified as the nasal facial muscle.
Sometimes the dilator naris anterior and posterior are referred to as parts of the nasalis muscle. Together with the alar part of the nasalis, the dilator naris anterior may also function to prevent the collapse of the nasal valve during inspiration.
The dilator naris muscle (or alae nasi muscle) is a part of the nasalis muscle. It has an anterior and a posterior part. It has origins from the nasal notch of the maxilla and the major alar cartilage, and a single insertion near the margin of the nostril. It controls nostril width, including changes during breathing. Its function can be tested as an analogue for the function of the facial nerve (VII), which supplies it.
The dilator naris muscle has a role in widening and narrowing the nostril, along with other muscles.[3][4] It may prevent the collapse of the nostril during inhalation, particularly in people with narrower nostrils.[4] The respiratory centre of the brainstem can use the muscle to control nostril width in relation to breathing.[3][5] It also moves the tip of the nose slightly.[2]
The potentially important topic of the effects of early UNO on the development of central pathways has unfortunately garnered rather little attention judging by the literature. In one study, the thickness of piriform cortex layer 1b and the size of semilunar cell dendrites were reduced ipsilaterally in postnatal day (PND) 30 rats occluded on PND1 [55]. In a recent study, the expression of the NMDA receptor NR2B and the phosphorylated form of the regulator element CREB were downregulated in the piriform five days after naris occlusion, an effect which could be fully reversed ten days after reopening of the naris [56]. And early postnatal UNO in rats delays the normal developmental increase in the ratio of AMPA receptors to NMDA receptors at primary sensory synapses but not associational synapses on pyramidal neurons in piriform cortex slice preparations [57]. In a previous related study, field potential recordings from intact anterior piriform cortex establish an ipsilateral depression of responses evoked by stimulation of cortical afferents in early (PND1) but not late (PND 30) occlusion [58]. However, in this study evoked potentials in intracortical association fiber were enhanced ipsilaterally in both early and late-onset UNO rats.
One last point on the deprivation achieved by UNO concerns the question of what the nasal cavity is actually being deprived of. The profound and comprehensive effect that UNO has on the interneuron population of the ipsilateral bulb stands in stark contrast to the subtotal, potentially regional, and environmentally dependent deprivation that occurs upon occluding a naris. Already noted are the substantially preserved olfactory capabilities of rodents forced to smell with only their occluded-side olfactory system intact, a feat requiring the rerouting of odor entry to the nasal fault. These considerations suggest that the interneuron population in some regions of the olfactory bulb should be spared by UNO. Even more fundamentally, the odor environment of the average laboratory or animal facility must be impoverished compared to a natural environment. Given this situation it seems likely that most of the 1000s of different types of OSNs (based on the olfactory receptor they express) are deprived of their specific ligand most of the time in the laboratory environment. In this light, the global effects of UNO on the bulb are all the more surprising. Is not deprivation in an impoverished environment of less moment than deprivation in an enriched environment Considering these facts it is interesting that OSNs, in addition to responding to odor ligands, are exquisite mechanoreceptors [90]. There can be little doubt that UNO causes marked and global decreases in mechanical force in the occluded fossa that would normally accompany respiratory airflow. Thus, it could be speculated that mechanical force deprivation may explain the global effects of UNO on the bulb provided that one also posits a role for OSN mechanical transduction in this activity dependence process.
Evidence of compensation also abounds at the first synapses of the olfactory system and in the periphery. Tyler et al. published among the first detailed studies of the effects of UNO on primary and secondary synapses in the olfactory system [98]. Using the whole-cell voltage-clamp technique in a rat slice preparation, they showed that two weeks of olfactory deprivation, beginning on PND2, increases the probability and quantal content of neurotransmitter release at primary olfactory synapses in the ipsilateral bulb. This effect of UNO could be demonstrated as early as three days after the onset of naris occlusion in young adult rats. Furthermore, immunolabeling of the vesicular glutamate transporter and two glutamate receptor subunits demonstrated that UNO caused an upregulation of these components at ipsilateral primary olfactory synapses. Voltage-clamp recordings of spontaneous and olfactory-nerve-evoked activity in the predominant second-order neurons of the bulb, including mitral cells, revealed that UNO also strengthens synapses in down-stream components of the olfactory circuit. This latter finding may explain earlier observations that the size and intensity of odor-induced 2-deoxyglucose foci are increased in the ipsilateral-bulb glomerular-layer of UNO rats after reopening the occluded naris [43]. In this earlier study it was observed that more ipsilateral than contralateral mitral cells respond to a given odorant. Collectively, these studies reveal a previously unknown compensatory response, namely, that primary and secondary olfactory synapses are strengthened ipsilaterally after UNO. Such strengthening of primary and secondary synapses following deprivation is also hard to square with a Hebbian process being more consistent with the notion of homeostatic plasticity [98, 99].
Naris follows the latest indoor design trends where light, airy tones meet bold textures. The tiles are available in the most popular colour combination of the recent years, white and grey tones, and provide a landscape for tapware and fittings in shiny chrome plating and decorations from natural materials.\\r\\n\\r\\nNaris features white base tiles complemented by textured tiles in the same colour and patchwork-patterned inserto tiles which break the uniformity of the tilework with a gentle grey tone. The flooring tile emulates the texture of timber for a touch of rustic.\"}'>narisdiscover the collection{{ tagsVisible.value 'disable tagging' : 'enable tagging' }} 59ce067264